H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy.
نویسندگان
چکیده
DNA double-strand breaks (DSBs) caused by cellular exposure to genotoxic agents or produced by inherent metabolic processes initiate a rapid and highly coordinated series of molecular events resulting in DNA damage signaling and repair. Phosphorylation of histone H2AX to form gamma-H2AX is one of the earliest of these events and is important for coordination of signaling and repair activities. An intriguing aspect of H2AX phosphorylation is that gamma-H2AX spreads a limited distance up to 1-2 Mbp from the site of a DNA break in mammalian cells. However, neither the distribution of H2AX throughout the genome nor the mechanism that defines the boundary of gamma-H2AX spreading have yet been described. Here, we report the identification of previously undescribed H2AX chromatin structures by successfully applying 4Pi microscopy to visualize endogenous nuclear proteins. Our observations suggest that H2AX is not distributed randomly throughout bulk chromatin, rather it exists in distinct clusters that themselves are uniformly distributed within the nuclear volume. These data support a model in which the size and distribution of H2AX clusters define the boundaries of gamma-H2AX spreading and also may provide a platform for the immediate and robust response observed after DNA damage.
منابع مشابه
Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci.
The induction of localized DNA damage within a discrete nuclear volume is an important tool in DNA repair studies. Both charged particle irradiation and laser microirradiation (LMI) systems allow for such a localized damage induction, but the results obtained are difficult to compare, as the delivered laser dose cannot be measured directly. Therefore, we revisited the idea of a biological dosim...
متن کاملAn autonomous chromatin/DNA-PK mechanism for localized DNA damage signaling in mammalian cells
Rapid phosphorylation of histone variant H2AX proximal to DNA breaks is an initiating event and a hallmark of eukaryotic DNA damage responses. Three mammalian kinases are known to phosphorylate H2AX in response to DNA damage. However, the mechanism(s) for damage-localized phosphorylation remains incompletely understood. The DNA-dependent protein kinase (DNA-PK) is the most abundant H2AX-modifyi...
متن کاملIdentification of the elementary structural units of the DNA damage response
Histone H2AX phosphorylation is an early signalling event triggered by DNA double-strand breaks (DSBs). To elucidate the elementary units of phospho-H2AX-labelled chromatin, we integrate super-resolution microscopy of phospho-H2AX during DNA repair in human cells with genome-wide sequencing analyses. Here we identify phospho-H2AX chromatin domains in the nanometre range with median length of ∼7...
متن کاملVRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage
All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the a...
متن کاملγ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin
DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate gamma-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 48 شماره
صفحات -
تاریخ انتشار 2006